A time-space adaptive method for the Schrödinger equation
نویسندگان
چکیده
In this paper, we present a discretization of the time-dependent Schrödinger equation based on a Magnus–Lanczos time integrator and high-order Gauss– Lobatto finite elements in space. A truncated Galerkin orthogonality is used to obtain duality-based a posteriori error estimates that address the temporal and the spatial error separately. Based on this theory, a space-time adaptive solver for the Schrödinger equation is devised. An efficient matrix-free implementation of the differential operator, suited for spectral elements, is used to enable computations for realistic configurations. We demonstrate the performance of the algorithm for the example of matter-field interaction.
منابع مشابه
A Semi-implicit Moving Mesh Method for the Focusing Nonlinear Schrödinger Equation
An efficient adaptive moving mesh method for investigation of the semi-classical limit of the focusing nonlinear Schrödinger equation is presented. The method employs a dynamic mesh to resolve the sea of solitons observed for small dispersion parameters. A second order semi-implicit discretization is used in conjunction with a dynamic mesh generator to achieve a cost-efficient, accurate, and st...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کامل